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Experiments on free decay of quasi-two-dimensional turbulent flows
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Decaying quasi-two-dimensional turbulence in a thin-layer flow is explored in laboratory experiments. We
report the presence of power-law interval in the enstrophy decay law, in agreement with earlier experiments by
Cardosoet al. [Phys. Rev. E49, 454 (1994] and Hanseret al. [Phys. Rev. B58, 7261(1998]. The decay
exponent proves sensitive to the way in which the energy decay is compensated. For the range of initial
microscale Reynolds numbers between 35 and 95, the decay exponent is closk4tdor the ratio of
enstrophy to energy, and to 0.75 for the enstrophy multiplied with a compensating factor of exat),
where\ is the bottom-drag coefficient aridhe decay time. The vorticity behavior does not comply with the
theory of Carnevalet al. [Phys. Rev. Lett66, 2735(1991)]: robust vortices are not observed in the vorticity
field and the vorticity kurtosis is less than the Gaussian value.
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[. INTRODUCTION approximately 15.73 to-0.8 in the limit of high Reynolds
numbers(the Reynolds number is defined belowhese re-
As follows from numerical simulations, the decay of two- sults imply that decay laws depend on enstrophy dissipation
dimensional(2D) incompressible turbulence at high initial Mechanism and the Reynolds number. _
Reynolds numbers proceeds via the formation of vortices Quantitative laboratory experiments on the behavior of

[1—7]. The vortices are stable against the background she&lecaying 2D turbulence are few in number. Experiments us-

and are not stirred, which results in suppression of enstrophFE‘g soap-film setups explored spectra and velocity and vor-

dissipation. The enstrophy decay law is generally shallowe/Cily increments in turbulence evolving downstream a comb

than Batchelor'st™2 law [8]. Existing theoried3-6,9,1Q 12‘13;55‘?”93/ spectra were found to scale with wave num-

predict a variety of scenarios for the decay and the basi?er ask”““in Refs.[12,13,13. The external scale of turbu-
uestion is whether they can be observed in real flows ence was shown to evolve linearly with tifi3] and struc-

q Motivated by numeric):/ evidence, Carnevaleal. [3] (seé ture functions of velocity and vorticity were found to behave

._in general agreement with the theoretical predictifhé—
also[2,4]) assumed that not only energy, but also the vortlc—.16]' The velocity measurements in Ref$2,13,15,16 were

ity extremum is conserved as 2D turbulence decays. Theikarried out with velocimeters and Taylor's hypothesis was
scaling predicts that if the number of vortices decreases ggyoked to link the frequency spectra at a given point to the
t~¢, the enstrophy decays &5 vortex size grows a8™,  gpatial spectra. The performance of this hypothesis was ana-
and both the distance between vortices and vorticity kurtosigyzed in Ref[18]. Particle image velocimetr§PIV) methods
ast®2. The numerically measured value of the expongi®  were used in Refd.14,17. Paper[13] pays attention to the
0.71-0.792-4], and recent simulations at very fine resolu- fact that flows in soap-film experiments experience a drag
tion in Ref.[7] give ¢ between 0.73 and 0.77. Hansenal.  against surrounding air, while papgt7] demonstrates that
[11] claim to have experimental support to this scenario inthis drag could be parametrized via the Rayleigh term added
their laboratory simulations of thin-layer flows showing thatto 2D Navier-Stokes equations.
£=0.7-0.1 and that the number of vortices, the enstrophy, Decay laws of 2D turbulence are analyzed in Refs.
the vortex size, the distance between vortices and vorticity11,19. These experiments use electromagnetic forcing to
kurtosis all follow power laws with properly related expo- excite vortex flows in thin layers of weakly conducting liquid
nents. In particular, they found the exponent0d.47 for the  and PIV methods to recover the velocity field on a regular
enstrophy decay. grid. In experiment$11] a special two-layer setup is used to
Numerical experiments in Reff3,4] as well as those in reduce the magnitude of divergent component in thin-layer
Refs.[5,6] suggest that the decay of 2D turbulence can belows. The interface between layers of slightly different den-
viewed as going through interactions between separate vosity is impermeable to fluid particles. This suppresses circu-
tices. lation in a vertical plane and, consequently, horizontal diver-
However, according to simulations 9], the enstrophy gence. 2D turbulence in thin-layer flows is affected by
decays a$~*2in runs with ordinary viscosity and 45%*in  bottom friction, which is usually parametrized via Rayleigh
runs with hyperviscosity. While the latter result is close tofriction term [20]. In this respect flows excited electromag-
the results of2—4], the former is much steeper thus pointing netically in thin layers and flows in soap films are similar,
out to the sensitivity of the enstrophy decay to the type ofand distinct from decaying flows simulated in numerical ex-
small-scale dissipation. Chasnp%0] studied the decay in periments.
runs with ordinary viscosity and found the decay law to be While there is no definite conclusion on the preferable
sensitive to the initial Reynolds number. According to Ref.decay scenario in Ref19], where the ratio of enstrophy to
[10], the exponent of the enstrophy decay varies from apenergy was found to behave &s%* the results off11]
proximately —2 at the critical initial Reynolds number of seem to support that ¢8], if properly interpreted. However,
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(b)

the systems studied if8] and that used if11] differ con-
siderably(in initial conditions, the type of small-scale dissi-
pation and the presence of bottom drag in the laboratory
flow) and one may wonder whether there are grounds for
such coincidence.

The study presented below uses the experimental setu
similar to that of[11,19. We used a single layer setup as-
suming that smallthough higher than if11]) velocity di- 2
vergence existing in this case will not change the laws of
decay considerablycompare laws in11,19 where two- % 2z 4 6 & 10
layer and single-layer setups are used Xfoml Xfoml

Our goal is to measure the enstrophy decay exponents, g 1. Fragments of the velocity field in quasistationary phase
compare them to exponents found in numerical simulationg,) and at the end of the decay experimént Initial current is 1 A

and in[11,19, and analyze to what extent the decay com-andh=5 mm. Maximum velocities are 3.8 cm(s) and 0.07 cm/s
plies with the known theories. Despite our experiments angl).

those of[11,19 deal with similar flows, and lead to close _ o o
values of the enstrophy decay exponent if the latter is mead points for each grid point, and comparing it with doubled
sured in the same way, we conclude that decay in thin-laye$tandard deviation over neighboring poiritee[21]). The

flows explored by us does not lend support to decay theorig§TOneous vectors were replaced by mean displacement over
derived from numerical simulations. neighboring points. Typically the interrogation window con-

tained images of several tracer clusters.
As the velocity field decays, the fraction of subpixel dis-
Il. THE EXPERIMENTAL PROCEDURE AND RESULTS placements between two successive frames increases, and
consequently, the PIV accuracy drops down. In order to
avoid this, we adjusted the time interval between consecutive
The experimental setup consists of a rectangular cell withrames taken for measurements. If rms tracer particle dis-
a thin bottom, the array of magnets with vertical magnetizaplacement between two given frames became less than some
tion axis, placed under the cell’s bottom, and a pair of electhreshold value, the displacement data were discarded and
trodes aligned with the cell vertical walls and connected toprocessing was repeated with frames separated by longer
the power supply. The horizontal dimensions of the cell ardime interval. The threshold value was determined experi-
14X 40 cnf. We used cylindrical magnets of 14 mm in di- mentally by smoothness of the energy decay curve and was
ameter and of 6 mm in height. Magnets formed a doublytypically less than two pixels. We terminated processing flow
periodic lattice with alternating direction of magnetization. images when the time interval between two analyzed frames
The cell was filled with a weak solution of blue vitriol to the became some small fraction of the inverse of the instanta-
depthh (we varied it from 2 to 6 mm The electric current Neous decay rate. Since velocity field decays nearly exponen-

exciting the initial flow was varied from 0.1 Ato 3 A. In our tially at the final stage, the error due to finiteness of the
experiments, we let the flow reach a statistically quasistation"térval between frames can be estimated analytically and
ary regime. Then the electric current was switched (aff turns quadratic in the time interval between the frames. We

some “zero” moment of timet=t,), and the decay of the neglected these errors as being small.

flow was recorded for time interval long enough for the flow The restore_d ve!ocny .f'e.}ld contains some grid” noise
to come to rest that is emphasized in vorticity and divergence fields. We par-

The velocity fields were recovered with a variant of PIV tially suppressed it by computing vorticity and divergence by

method. The working area of the flow was a rectangular with8 grid points adjacent to a given one. Although the diver-

sides of 146185 mn?. The surface of the flow was 9ENCE of the measured velocity field is small, it is finite and
. h R0 S .

densely seeded by aluminum powder clusters with mean siz'teS rms v_arl]uE_ Cf]“? r.e.alq'“: 1.5 % of :deVOI’tICItlél/ I?I EXpEi”
of approximately 0.4 mm. Video images of the tracer fieldmentS with high initial velocity amplitude. As the flow slows

' : . . down, the ratio of rms divergence to rms vorticity decreases.
(25 frames per second at resolution of 5420 pixels) 9 y
were processed using an interrogation window of 9 Figure 1 shpws thg ve_Iocity field forced by the electric
%9 pixels on an equidistant grid of 5474 points (grid current of 1 A in quasistationary pha&s, and at the end of

! A ; ; the decay experimenb) in a fluid layer with thicknes$
fames were shified in opposit. directions refave to fixec S M- ONY a part of the working domain is shown. The
: . PP . initial field contains vortices of the magnet size and struc-
grid points (by some vectorsl/2 and —d/2, respectively

d displ o ht at id point that tures of greater size are observed in the final phase. Maxi-
and displacements were sougnt at every grid point that ., velocity amplitude is 3.8 cm/s in Fig(d), and 0.07
minimize absolute difference of image intensities of two

gm/s in Fig. 1b). Frames separated by 0.04 and 1.48 s re-

y [em]

A. Experimental procedure

frames integrated over the interrogation windows centere . L
. ) . ively wer recover th velocity fields.
around that grid point. This procedure led to the reduce pectively were used to recover these velocity fields

number of erroneous displacement vect@smpared with
the standard correlation analysi€rroneous vectors were
discriminated by computing the difference between the dis- The velocity field in a thin-layer flow satisfies the no-slip
placement vector and the mean displacement over neighbaopoundary condition at the cell bottom. This brings about the

B. Parameters
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bottom drag as an additional dissipation mechanism. Since
flows forced electromagnetically are typically slow and ap-

proximately two dimensional, the presence of the bottom

drag is usually parametrizédee[20]) via a linear drag term

in the 2D vorticity equation,

L+, {]=—N{+ VAL, &Y

]

S2
2
o

Energy density [cm2/
1

where ¢y is the stream function at the flow surfades A ¢

the vorticity, [ #,{] the Jacobian of fieldgy and £, v the
kinematic viscosity, and the linear drag coefficient. It can
be estimated as=2v«/h?, with k a fit parameter of order
unity. This estimate comes from considering the flow as lo-
cally a quasi-Poiseuille one, and the parameatesccounts
for nonuniform vertical profile of the driving force20,22]. 0.2

Cardoscet al.[19] and Hanseret al. [11] suggest thak 0 (b)
= 7?/8, or that\ is the decay rate of the first Stokes mgde =~ |-
proper value for the decay rate if nonlinear terms are ne- -0.2 o
glected in the equations of motiprOur experience is that 0.4 ik M
may admit higher valuef22] at the nonlinear stage.

We emphasize that the presence of linear drag is typical -0.6
for quasi-2D flows studied in laboratory. In experiments with 08
rotating fluids it comes from the Ekman boundary lagsee,
e.g.,[20]), and in experiments with soap films, as a result of
friction against the surrounding dit3,17). . : .

Because of the presence of two dissipation mechanisms, 0 5 10 15 20
thin-layer flows are characterized by two Reynolds numbers. Decay time t-, [s]

The first, commonly used Reynolds number is=RéL/v,
wherel is the velocity scale and is .the typical size. \.Ne =5 mm (a) and contributions to the energy decéy: d(In E)/dt
adoptU = E*2 andL=(I_E/Z)1’2, to obtain Re- E{ZUZV’ asin - L o7/E (irregular solid ling, —2\ (straig(%t soéfi%i Ii&](}, <)':1nd
[14]. It should be multiplied with a factor of %% to obtain —207/E (dotted ling.

the Reynolds number defined ih0]. HereE and Z are the

energy and enstropHyper unit mask respectively. For flows presence of bottom drag makes them less supercritical and is
with initial energy spectrum concentrated in the vicinity of ¢ primary importance.

forcing wave numbek;, the scald. corresponds té; * and To compensate the contribution from the linear drag term

is much lesgby a factor of (2r) '] than the wavelength. in Eq. (1) the authors of11] propose to make the transform
While this could cause some inconvenience in compaking to new, “compressed” time defined as

with observed sizes of vortex features, the definitior af

i
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FIG. 2. Energy decay in experiment with Rg(~83 andh

terms of energy and enstrophy is free of conventions that dr=e Mt-tdt,
would be necessary otherwise. The same definition of scale )
is used in[19]. or 7={1—exd—\(t—ty)]/\, and to compensated fields

In our experimentsk; *= (k3 +k2) " Y2=d/(my2) or (¥'.{)=(h)exdM(i=t))] In new variables, the linear
0.31 cm. Herek;,=k;,=d/ are the components of forcing drag term disappears and the vorticity equation becomes
wave number along side walls of the cell ashis the magnet 0.0+ [y L= v AL
diameter. The estimate for the maximum initial Reynolds T ' '

number is Re-100, which is also close to the values re- the price paid for the transform is the exponentially growing
ported in soap-film experimentsee[13,14 and take into \iscosity s’ = » exg\(t—to)] and finite evolution time. While
account that the external scale in R3] is 27 times e compressed time could be convenient for the analysis, it

greate). The Reynolds number defined on the working areggqires the experimentally determined paramgteand er-
(or cel size is much higher and exceeds 2000 in experiyo s jn \ would be exponentially amplified in the compen-
ments forced by the current higher than Ipapers11,19  ¢4ied fields.

report close values of the cell-size Reynolds number

The second Reynolds number is based on the bottom
drag. It could be defined as ReU/L\=2ZY%\ and thought
of as the number of vortex turnovers performed for linear Figure 2a) shows the typical pattern of energy decay in
drag spin down time. This quantity is smaller than the com-our experiments. It refers to the flow forc¢at t<ty) with
mon Reynolds number because the bottom drag in thin-layethe current of 2 A in a layer with thickness=5 mm. The
flows is responsible for the larger part of dissipation. Flowsinitial Reynolds number Re83. Making use of the variable
will be governed by the lowest Reynolds number, thus thdime step between analyzed frames made it possible to ob-

C. Energy decay and the drag coefficient
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serve energy decay for more than 3 orders of magnitude. As
follows from Fig. 2, the energy approximately follows the o
exponential law for most of the decay. However, closer in- +
spection of energy evolution in experiments with relatively
thick fluid layer h=5-6 mm) shows that the exponent var-
ies during the decay, from larger to lower values. This partly
reflects the decrease in the contribution from ordinary vis-
cosity as the typical flow scale grows during decay. In ex-
periments with smalh, the exponent remains virtually con-
stant after some initial phase, as the contribution of ordinary
viscosity (compared to the bottom dragto the decay dec-
rement is small even on the energy injection scale.

The energy budget equation for the case under consider- -
ation is 100 k [1/cm] 10

-
o
S

E(K) [cm®/s?]

—
o|
IS

E=—-2\E—-2vZ+F/S, FIG. 3. Evolution of energy spectrum in a flow excited with
current of 1 AN(t—tg)=0 (O), 0.35 (V), 1.15 (+).

where F=— [ ,gn-v(v?/2+ plp)dl+ v 5¢v-dl is the en-
ergy flux into the flow through the lateral boundari€the  pend on the flow geometry. It is also higher than the value
area of working domaindl is the element of the boundary , — 2/8~1.23 for the first Stokes mode used in REFL].
oriented so that the domain is to the left, ams the vector  The |atter fact is perhaps not surprising because the flow
of outer normal. The longer walls of the working domain arereynolds number is greater than unity except for the final
walls is not zero, but could be neglected, as positive angaries from 0.17 to 0.15 “$ in experiments initially forced

negative contributions effectively cancel each other makingyith currents from 0.5 to 3 A in a fluid layer ¢f=5 mm.
F/S very small compared to the total energy dissipation.

Figure 2b) illustrates the procedure of computation of the
drag coefficient\. The irregular solid line in Fig. ®) dis- D. Decay exponents

plays the difference between the full decay rate, given by the \we present the analysis of the decaying turbulence as de-
logarithmic derivative of energy] In E/dt, and the contribu-  rived from experiments performed with fluid layer of thick-
tion into the decay rate from the ordinary viscosity nessh=5 mm. Figure 3 shows typical evolution of the iso-
—2vZ/E. The latter quantity is plotted by the dotted line for tropic energy spectra computed immediately at the beginning
comparison. The data refer to the same experiment as in Figs the decay, ak (t—ty)~0.35 and ah (t—ty)~1.15 in the
2(a@). The logarithmic derivative is computed by forward dif- experiment with the initial Reynolds number R85 (initial
ferences and smoothed using moving mean over three daggrrent of 1 A. The spectra were computed after applying
points (this affects only the initial part of the curve where the Hanning window to the velocity field. The spectral shape
energy tendenc¥ fluctuates noticeably The straight solid does not change aftar(t—ty) =1.15 and only the amplitude
line in Fig. Ab) corresponds to the mean exponédéter-  of the spectrum decreases. The initial spectrum has the peak
mined over last 15)f energy decay due to the bottom drag. atk~2.8 cm %, which is close to the forcing wave number
This exponent is identified with X k; estimated above. As the flow decays, energy penetrates to

The initial part of the irregular curve goes below the solidsmallerk and the energy peak shifts to the largest resolvable
straight line, indicating that the energy decay ri@g/dt| is  scales. We were not able to study the behavior of the peak
larger than the sumXE +2vZ, contrary to what one would wave number as a function of time, as the available spectral
expect from a strictly 2D flow. The discrepancy between theange was too narrow and spectral peaks were only margin-
irregular and straight lines in Fig(1d) should be attributed to ally seen.
3D adaptation of the flow on early stages of the decay. The All spectra show saturation at larde which is the con-
contribution from ordinary viscosity measures one-fourth ofsequence of finite accuracy of the experimental dafa
the total 2D decay rate (2+2vZ/E) initially, and drops to  [13,15]). The straight thin line in Fig. 3 has a slope of.
less than 1/16 at the end of the experiment. We conclude th&vhile such a slope does not contradict the available experi-
the main contribution into the decay rate comes from themental data(a slope of —3.3 was reported in Refs.
bottom drag, and even total neglect for ordinary viscosity{12,13,15), the power-law behavior takes place over very
would change the value of measured in experiment but limited wave-number interval that is narrower than in typical
slightly. soap-film experiments, see Ref$3,15.

We found that the quantitye=\h?/(2v) slightly de- Figures 4a) and 4c) show the decay of compensated en-
creases as the layer thickness is increased; for a series wigtrophy Z' =(¢')?/2 and the growth of the typical size
the sameh it decreases with the Reynolds number. Its aver=(E/Z)Y? against the compressed timein three realiza-
aged valuex=1.7+0.15 for the kinematic viscosityy  tions with various initial Reynolds numbers. Figuréb)and
=0.012 cmi/s. The measured value af is different from  4(d) show the ratio of enstrophy to energy and the behavior
the values reported if22] (1.5-1.6, however, it could de- of vorticity kurtosis as functions of the decay tirnet,. The
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decreased. The slope of the thin line in Figa)dis —0.75.
For the experiment with the highest Reynolds number the
least square fit gives the spectral sl@pe-0.77+0.035 over
the interval of\(t—ty) from 0.05 to 0.83, and it becomes
0.95+0.23 for a wider interval from 0.05 to 3.3. It is shal-
lower than the slope reported in Ref9,10]. According to
o o [9] £,=1.2, and Ref[10] gives &, around 1.2 for the range
Decay time t-t [s] of Reynolds numbers in our experiments, wih— 0.8 in
the limit of Re sufficiently large (Re 1024/2/?). However,
in our experiments, the Reynolds numiiErg. 5 decreases
with time, so one would expect a steepigrany) exponent.
The observed exponent of the enstrophy decay law also
differs from the value reported in Refgll]. Hansenet al.
[11], however, measure the exponent of the decay of the
enstrophy-to-energy ratid/E=Z'/E’. Similarly as withZ’,
02 04 06 08 1 0 5 10 15 20 ) .
At Decay time t-t, [s] we found Z/E as a function ofr to exhibit a power-law
) region only in the realization with the highest Rg( The
FIG. 4. Compensated enstropBy (a), the ratio of enstrophy to respective exponent is-0.5=0.07 for A(t—t,) varying
. . _ 1/2 . . 0
energy (b), typical sizeL =(E/Z)™ (c), and kurtosisd) in decay g5 g 05 tg 3.3, close to the value reported in FRéL]. The
realizations with different initial Reynolds number., ©, and * deca -ex one.nt,determined in this way deviates ev.en further
correspond to initial forcing by the currents of 0.5, 1.0, and 3.0 A, f yh ph ical . y
respectively; the straight line ife) has a slope of-0.75, and the rom the t eoretical predictions.
straight line in(b) has a slope of-0.4. ‘The difference between the values of exponents deter-
mined by the decays &' andZ/E comes entirely from the

three realizations analyzed in Fig. 4 were obtained by transdifference between the bottom drag decay [&x\(t—1y)]

mitting initial currents of 0.5, 1, and 3 A through the electro- that is compensated i, and the real decay of energyith

lyte. Corresponding Reynolds numbers are given in Fig. 5.2 contrlbut!on from ordlnary viscosity and 3D effe)ct§h|s. .
All decay realizations excited by currents of the samedifference is small at the final stage of the decay, but it is

magnitude show close behavior, although there always arg/gnificant initially. o _

some fluctuations due to different initial conditions. The power-law behavior is expressed much better if we
If we follow the argument of11] and analyze the decay Plot Z' or the ratioZ/E against the decay time-to. The

of compensated enstrophy vs compressed fifig. 4a)], decay ofZ/E is shown in Fig. 4b). While the slope changes

we would conclude that there exists an interval where thdrom realization to realization, the power-law behavior is ob-

compensated enstrophy approximately obeys the power lagerved for all three cases presented in Fign).4The thin
straight line(drawn for comparisoncorresponds to a slope

Z'~77 %, of —0.4. The measured slopes aré.44+0.03[time inter-
val  0.2<\(t—ty)<3], —0.48:0.04 [0.13=\(t—tp)
provided that the initial Reynolds numbésee Fig. 5is  =<3.5], and —0.37+0.02 [0.05<\(t—ty)=<3.3] for the re-
sufficiently high. The power-law interval is not very wide alizations initialized with currents of 0.5, 1, and 3 A, respec-
and disappears altogether as the initial Reynolds number t$vely. The decay of the compensated enstrophy against ordi-
nary time is characterized by power laws with exponents
100 : . - . —0.83+0.03 [time interval 0.2&N(t—1ty)<3], —0.78
+0.05 [0.13s\(t—tg)<3.5], and —0.71*+0.04 [0.05
<\(t—tg)=<3.3] for the same realizations.

Compensated enstrophy [5-2]

107

- 8 We note that the slopes found for enstrophy decay against
3 both the compressed and ordinary times are close. The same
5 601 conclusion can be drawn from the comparison of the results
) of [11,19. The slopes, however, are sensitive to the way in
S 4ob which the influence of the bottom drag is compensated.
g Since the typical vortex size as defined here is linked to
the enstrophy-to-energy ratjd.= (Z/E)~*?], the presence
207 of power-law interval in the dependence BfE on t—t,
+++?I** e implies the presence of the power-law interval in the depen-
0 s SAMAERE 34 RN Sy dence ofL ont—ty, and exponents can be computed from
0 5 Decll?( time tl?o [s] 20 25 those ofZ/E.

However, if typical vortex size is plotted against the com-
FIG. 5. Reynolds numbers for the experiments shown in Fig. 4oressed timer, it shows almost linear behavior in all three

(+, O, and *). The thin line plots Recorresponding to the case of cases, see Fig.(é. In log coordinatesl. as a function ofr
highest Refy). would show a power-law interval only for the highest Rey-
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nolds number. Since typical vortex size increases only two-
fold for the time of evolution, neither of the interpretations is
reliable.

The magnitude of vorticity kurtosifFig. 4(d)] is below
the Gaussian value of 3. It drops at the beginning of the
decay to approximately 1.8, but starts to increase afterwards.
This suggests that vorticity distribution is rather smooth, and
well-pronounced vorticity extrema, or vortices, are not
present initially, and do not form as turbulence evolves. In-
deed, one would normally associate the appearance of well-
formed vortices with high magnitude of kurtosis, up to sev-
eral tengsee, e.g.[1,7]). This aspect of turbulence evolution
in thin layer makes it very different from the evolution ob-
served in numeric simulation.

In all our experiments the Reynolds numksee Fig. %
decreases down to values of several uvits were unable to
follow very small flow velocities down to the complete de-
cay). Plotted as a function of the compressed time, it de-
creases approximately linearly. The observed decrease in the
Reynolds number indicates once again that the decay in thin
layers is different from that observed in typical numerical
simulations. Indeed, as follows frofl0], the decay in a
fluid with normal viscosity proceeds with increase of the
Reynolds number if initially Re exceeds a value of
15.73/2”2 In all cases presented in Fig. 5 the initial Rey-
nolds number is higher than critical, but no increase is ob-
served.

As we have already mentioned, the real role of dissipation
is underpredicted by ordinary Reynolds number, and decay-
ing flows enter the stage of linear dissipation earlier than Re
becomes comparable to unity. The Reynolds number based
on the bottom drag is more appropriate quantity for flows in
thin layers. In Fig. 5 we present the evolution of they Re
the highest initial Reynolds numbéhin line). This quantity
is smaller than the ordinary Reynolds number and becomes
less than unity 11 s after the beginning of the decay. The
subsequent evolution of the flow is linear decay, when non-
linear energy transfer does not play any significant role.

E. Vorticity patterns FIG. 6. Vorticity patterns in forced regim&), 2 s after the

The small(smaller than Gaussiamagnitude of kurtosis beginning of the decagb), and in the final phase 20 s lat@). The
indicate the absence of strong vortices in vorticity field. Fig-black and white contours correspond to rms and double-rms levels,
ure 6 presents vorticity realizations at the forced st@ye2 and the gray scale palette is used. The coordinates are in grid inter-
s[\(t—ty)~0.3] after forcing was switched offb), and at ~ Vals.
the final stage of the decay 20s(t—ty) ~ 3] later(c) in the
experiment with Retp)~83. Contours in vorticity patterns However, there is much arbitrariness around any vortex
are drawn at levels of rms and twice rms vorticfiy,s. The  census algorithm in such smooth vorticity fields, and we
areas where vorticity exceeds 3,s are practically absent. choose not to speculate on quantities such as the number of
The areas occupied by vorticity in excess df,,g do not  vortices or the distance between vortices.
possess reguldcircular or elliptio form, and are surrounded Comparison of Figs.®) and &b) shows that initial decay
by much wider areas where vorticity level is between oneof turbulent flow proceeds as one would have expected. The
and two rms. These latter seem to be more important dyvortices stretch each other and the population of initial vor-
namically, since they induce larger velocity field than ticity patches evolves into filaments. Still, in one respect, the
“vortices”—areas with |{|>2¢,,s. The size of vorticity vorticity pattern looks very different from that seen in nu-
patches increases during evolution, together with the dismerical simulations. We do not observe thin and intense fila-
tance between their centers. For example, the number of coments and typical filament thickness is limited to several grid
tours|{|=¢,ms S€EN in Fig. €) is approximately five times intervals. Instead of intense stretching, formation of very
greater than that in the final pattern in Fidc)s elongated structures, and appearance of strong vortices on
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such a background, we observe rather “smooth” decay, andurrent values of the Reynolds numpeEven if we leave

the area where vorticity level exceefis,s occupies a con- aside the obvious influence of bottom drag, the decay should
siderable part of the total area during the decay. The finabe sensitive to the type of small-scale dissipation and the
vorticity distribution, Fig. @c), consists of wide vorticity Reynolds number, as we have already mentioned in the In-
patches, and contouf$| = ¢,s l00k very irregular. This in-  troduction.

dicates that we are dealing with remnant vorticity that slowly In accordance with the modified vorticity equati@), the

dies away. The distribution of vorticity in Fig.(§ contains  decay of thin-layer flows vs the compressed time is accom-
fluctuations on the grid scale—they are seen because of thganied by increase of ordinary viscosity. This results in de-

very low vorticity amplitude. creasing Reynolds number at large time, so the self-similar
decay is hardly possible. However, one would expect that in
1Il. DISCUSSION AND CONCLUSIONS this case the compensated enstrophy would decay faster than

) power — 0.8 (the shallowest value of the decay exponent in
Accqrdmg to the results presented abqve, the enstrophMo]) of the compressed time. So the question is why the
decay in thin-layer flows could be approximated by powercompensated enstrophy decays anomalously slowly in the
laws (t—to) ¢ over some interval of decay timte-to. HOw-  experimental system studied here. The answer could be the

ever, the value of the decay exponent proves sensitive to thessence of thin vorticity filaments in the vorticity field and
way in which it is determined. The problem comes from thethys the suppression of the enstrophy cascade to smaller
influence of bottom drag that introduces additional dissipascales. This corresponds to relatively small effect of advec-
tion of both energy and enstrophy es?(!"'o. If this dis-  tion compared to that of dissipation, or in other words, to the
sipation is compensated directly by introducing the compeninjtial Reynolds numbers being insufficiently high due to the
sated enstrophyZ’, we find ¢ scattered around 0.75 presence of bottom drag. The fact that flows in thin layers are
depending on the initial Reynolds number. If the bottom'drano dimensional 0n|y, approximate|y’ and two dimensional-
dissipation is “compensated” by considering the enstrophy-ty is broken on scales comparable to or less than the fluid
to-energy ratio, the exponent is around a value of 0.45, ijepth, could also play some role. The true enstrophy dissi-
agreement with the results previously reported in Refspation is influenced by 3D processes and need not obey 2D
[11,19. Using the compressed time instead of ordinary timeequations.
makes the performance of power-law approximation worse, The peculiar feature of flows excited electromagnetically
as the decay curve becomes steepexas-1. in thin layers is that the horizontal scale of forcing is typi-
However, bothZ’ andZ/E (independent of the time scale cally close to or larger than the fluid layer thickness, as thick
used do not seem to be proper quantities for the comparisofayers cannot be excited effectively due to an exponential
with numerical simulations. Indeed, in numerical simulationsdecay of the magnetic field with distance from the bottom.
of decaying 2D turbulencesee, e.g.[7]) the energy remains  Thjs results in strong bottom drag compared to ordinary dis-
virtually constant during the decay. On the contrary, in labo-jpation, and relatively high initial Reynolds numbers are
ratory experiments that use thin-layer setups, the energy egeeded to provide a time interval with the Reynolds number
sentially decays, mostly due to the bottom drag, but also dugrowing during the decay. In this respect soap-film setups are
to the ordinary viscosity, since the initial Reynolds number isjess restrictive, and the growth of the Reynolds number in
not very high. The 3D adaptation at the initial stage reduceglecaying soap-film turbulence was already reported in Ref.
the Reynolds number even further. Our conclusion is thaf13]. In Ref.[13], the initial Reynolds numbers are of the
one cannot compare these cases, and the fact that the slopes@ine order as in our experimefftseir integral scale is 2
enstrophy decay is sensitive to the type of compensation sugmes highey, the energy and rms velocity are decaying due

ports it. . _ ~ to external drag, but the integral scale is growing such that
We do not see any developed vortices in the evolvinghe Reynolds number does not decrease.

vorticity field, and the vorticity kurtosis remains less than the

Gaussian value of &he same is true fdrll], see their Fig.

8). This should be compared to a value of several tens typical ACKNOWLEDGMENTS
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