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Experiments on free decay of quasi-two-dimensional turbulent flows

S. Danilov, F. V. Dolzhanskii, V. A. Dovzhenko, and V. A. Krymov
Institute of Atmospheric Physics, 3 Pyzhevsky per., 109017 Moscow, Russia
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Decaying quasi-two-dimensional turbulence in a thin-layer flow is explored in laboratory experiments. We
report the presence of power-law interval in the enstrophy decay law, in agreement with earlier experiments by
Cardosoet al. @Phys. Rev. E49, 454 ~1994!# and Hansenet al. @Phys. Rev. E58, 7261 ~1998!#. The decay
exponent proves sensitive to the way in which the energy decay is compensated. For the range of initial
microscale Reynolds numbers between 35 and 95, the decay exponent is close to20.4 for the ratio of
enstrophy to energy, and to20.75 for the enstrophy multiplied with a compensating factor of exp(22lt),
wherel is the bottom-drag coefficient andt the decay time. The vorticity behavior does not comply with the
theory of Carnevaleet al. @Phys. Rev. Lett.66, 2735~1991!#: robust vortices are not observed in the vorticity
field and the vorticity kurtosis is less than the Gaussian value.

DOI: 10.1103/PhysRevE.65.036316 PACS number~s!: 47.32.Cc, 47.27.Qb
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I. INTRODUCTION

As follows from numerical simulations, the decay of tw
dimensional~2D! incompressible turbulence at high initia
Reynolds numbers proceeds via the formation of vorti
@1–7#. The vortices are stable against the background sh
and are not stirred, which results in suppression of enstro
dissipation. The enstrophy decay law is generally shallo
than Batchelor’st22 law @8#. Existing theories@3–6,9,10#
predict a variety of scenarios for the decay and the ba
question is whether they can be observed in real flows.

Motivated by numeric evidence, Carnevaleet al. @3# ~see
also@2,4#! assumed that not only energy, but also the vor
ity extremum is conserved as 2D turbulence decays. T
scaling predicts that if the number of vortices decrease
t2j, the enstrophy decays ast2j/2, vortex size grows astj/4,
and both the distance between vortices and vorticity kurto
astj/2. The numerically measured value of the exponentj is
0.71–0.75@2–4#, and recent simulations at very fine resol
tion in Ref. @7# give j between 0.73 and 0.77. Hansenet al.
@11# claim to have experimental support to this scenario
their laboratory simulations of thin-layer flows showing th
j50.760.1 and that the number of vortices, the enstrop
the vortex size, the distance between vortices and vorti
kurtosis all follow power laws with properly related exp
nents. In particular, they found the exponent of20.47 for the
enstrophy decay.

Numerical experiments in Refs.@3,4# as well as those in
Refs. @5,6# suggest that the decay of 2D turbulence can
viewed as going through interactions between separate
tices.

However, according to simulations of@9#, the enstrophy
decays ast21.2 in runs with ordinary viscosity and ast20.4 in
runs with hyperviscosity. While the latter result is close
the results of@2–4#, the former is much steeper thus pointin
out to the sensitivity of the enstrophy decay to the type
small-scale dissipation. Chasnov@10# studied the decay in
runs with ordinary viscosity and found the decay law to
sensitive to the initial Reynolds number. According to R
@10#, the exponent of the enstrophy decay varies from
proximately 22 at the critical initial Reynolds number o
1063-651X/2002/65~3!/036316~8!/$20.00 65 0363
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approximately 15.73 to20.8 in the limit of high Reynolds
numbers~the Reynolds number is defined below!. These re-
sults imply that decay laws depend on enstrophy dissipa
mechanism and the Reynolds number.

Quantitative laboratory experiments on the behavior
decaying 2D turbulence are few in number. Experiments
ing soap-film setups explored spectra and velocity and v
ticity increments in turbulence evolving downstream a co
@12–18#. Energy spectra were found to scale with wave nu
ber ask23.3 in Refs.@12,13,15#. The external scale of turbu
lence was shown to evolve linearly with time@13# and struc-
ture functions of velocity and vorticity were found to beha
in general agreement with the theoretical predictions@14–
16#. The velocity measurements in Refs.@12,13,15,16# were
carried out with velocimeters and Taylor’s hypothesis w
invoked to link the frequency spectra at a given point to
spatial spectra. The performance of this hypothesis was
lyzed in Ref.@18#. Particle image velocimetry~PIV! methods
were used in Refs.@14,17#. Paper@13# pays attention to the
fact that flows in soap-film experiments experience a d
against surrounding air, while paper@17# demonstrates tha
this drag could be parametrized via the Rayleigh term ad
to 2D Navier-Stokes equations.

Decay laws of 2D turbulence are analyzed in Re
@11,19#. These experiments use electromagnetic forcing
excite vortex flows in thin layers of weakly conducting liqu
and PIV methods to recover the velocity field on a regu
grid. In experiments@11# a special two-layer setup is used
reduce the magnitude of divergent component in thin-la
flows. The interface between layers of slightly different de
sity is impermeable to fluid particles. This suppresses cir
lation in a vertical plane and, consequently, horizontal div
gence. 2D turbulence in thin-layer flows is affected
bottom friction, which is usually parametrized via Rayleig
friction term @20#. In this respect flows excited electroma
netically in thin layers and flows in soap films are simila
and distinct from decaying flows simulated in numerical e
periments.

While there is no definite conclusion on the preferab
decay scenario in Ref.@19#, where the ratio of enstrophy to
energy was found to behave ast20.44, the results of@11#
seem to support that of@3#, if properly interpreted. However
©2002 The American Physical Society16-1
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DANILOV, DOLZHANSKII, DOVZHENKO, AND KRYMOV PHYSICAL REVIEW E 65 036316
the systems studied in@3# and that used in@11# differ con-
siderably~in initial conditions, the type of small-scale diss
pation and the presence of bottom drag in the labora
flow! and one may wonder whether there are grounds
such coincidence.

The study presented below uses the experimental s
similar to that of@11,19#. We used a single layer setup a
suming that small~though higher than in@11#! velocity di-
vergence existing in this case will not change the laws
decay considerably~compare laws in@11,19# where two-
layer and single-layer setups are used!.

Our goal is to measure the enstrophy decay expone
compare them to exponents found in numerical simulati
and in @11,19#, and analyze to what extent the decay co
plies with the known theories. Despite our experiments a
those of@11,19# deal with similar flows, and lead to clos
values of the enstrophy decay exponent if the latter is m
sured in the same way, we conclude that decay in thin-la
flows explored by us does not lend support to decay theo
derived from numerical simulations.

II. THE EXPERIMENTAL PROCEDURE AND RESULTS

A. Experimental procedure

The experimental setup consists of a rectangular cell w
a thin bottom, the array of magnets with vertical magneti
tion axis, placed under the cell’s bottom, and a pair of el
trodes aligned with the cell vertical walls and connected
the power supply. The horizontal dimensions of the cell
14340 cm2. We used cylindrical magnets of 14 mm in d
ameter and of 6 mm in height. Magnets formed a dou
periodic lattice with alternating direction of magnetizatio
The cell was filled with a weak solution of blue vitriol to th
depthh ~we varied it from 2 to 6 mm!. The electric current
exciting the initial flow was varied from 0.1 A to 3 A. In ou
experiments, we let the flow reach a statistically quasistat
ary regime. Then the electric current was switched off~at
some ‘‘zero’’ moment of timet5t0), and the decay of the
flow was recorded for time interval long enough for the flo
to come to rest.

The velocity fields were recovered with a variant of P
method. The working area of the flow was a rectangular w
sides of 1403185 mm2. The surface of the flow was
densely seeded by aluminum powder clusters with mean
of approximately 0.4 mm. Video images of the tracer fie
~25 frames per second at resolution of 5403720 pixels)
were processed using an interrogation window of
39 pixels on an equidistant grid of 54374 points ~grid
step is about 2.3 mm in dimensional units!. The two analyzed
frames were shifted in opposite directions relative to fix
grid points ~by some vectorsd/2 and 2d/2, respectively!,
and displacementsd were sought at every grid point tha
minimize absolute difference of image intensities of tw
frames integrated over the interrogation windows cente
around that grid point. This procedure led to the reduc
number of erroneous displacement vectors~compared with
the standard correlation analysis!. Erroneous vectors wer
discriminated by computing the difference between the d
placement vector and the mean displacement over neigh
03631
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ing points for each grid point, and comparing it with doubl
standard deviation over neighboring points~see@21#!. The
erroneous vectors were replaced by mean displacement
neighboring points. Typically the interrogation window co
tained images of several tracer clusters.

As the velocity field decays, the fraction of subpixel di
placements between two successive frames increases,
consequently, the PIV accuracy drops down. In order
avoid this, we adjusted the time interval between consecu
frames taken for measurements. If rms tracer particle
placement between two given frames became less than s
threshold value, the displacement data were discarded
processing was repeated with frames separated by lo
time interval. The threshold value was determined exp
mentally by smoothness of the energy decay curve and
typically less than two pixels. We terminated processing fl
images when the time interval between two analyzed fram
became some small fraction of the inverse of the instan
neous decay rate. Since velocity field decays nearly expon
tially at the final stage, the error due to finiteness of t
interval between frames can be estimated analytically
turns quadratic in the time interval between the frames.
neglected these errors as being small.

The restored velocity field contains some ‘‘grid’’ nois
that is emphasized in vorticity and divergence fields. We p
tially suppressed it by computing vorticity and divergence
8 grid points adjacent to a given one. Although the div
gence of the measured velocity field is small, it is finite a
its rms value can reach~10–15!% of rms vorticity in experi-
ments with high initial velocity amplitude. As the flow slow
down, the ratio of rms divergence to rms vorticity decreas

Figure 1 shows the velocity field forced by the elect
current of 1 A in quasistationary phase~a!, and at the end of
the decay experiment~b! in a fluid layer with thicknessh
55 mm. Only a part of the working domain is shown. Th
initial field contains vortices of the magnet size and stru
tures of greater size are observed in the final phase. M
mum velocity amplitude is 3.8 cm/s in Fig. 1~a!, and 0.07
cm/s in Fig. 1~b!. Frames separated by 0.04 and 1.48 s
spectively were used to recover these velocity fields.

B. Parameters

The velocity field in a thin-layer flow satisfies the no-sl
boundary condition at the cell bottom. This brings about

FIG. 1. Fragments of the velocity field in quasistationary pha
~a! and at the end of the decay experiment~b!. Initial current is 1 A
andh55 mm. Maximum velocities are 3.8 cm/s~a! and 0.07 cm/s
~b!.
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EXPERIMENTS ON FREE DECAY OF QUASI-TWO- . . . PHYSICAL REVIEW E 65 036316
bottom drag as an additional dissipation mechanism. S
flows forced electromagnetically are typically slow and a
proximately two dimensional, the presence of the bott
drag is usually parametrized~see@20#! via a linear drag term
in the 2D vorticity equation,

]z1@c,z#52lz1nDz, ~1!

wherec is the stream function at the flow surface,z5Dc
the vorticity, @c,z# the Jacobian of fieldsc and z, n the
kinematic viscosity, andl the linear drag coefficient. It can
be estimated asl52nk/h2, with k a fit parameter of orde
unity. This estimate comes from considering the flow as
cally a quasi-Poiseuille one, and the parameterk accounts
for nonuniform vertical profile of the driving force@20,22#.

Cardosoet al. @19# and Hansenet al. @11# suggest thatk
5p2/8, or thatl is the decay rate of the first Stokes mode~a
proper value for the decay rate if nonlinear terms are
glected in the equations of motion!. Our experience is thatk
may admit higher values@22# at the nonlinear stage.

We emphasize that the presence of linear drag is typ
for quasi-2D flows studied in laboratory. In experiments w
rotating fluids it comes from the Ekman boundary layer~see,
e.g.,@20#!, and in experiments with soap films, as a result
friction against the surrounding air@13,17#.

Because of the presence of two dissipation mechanis
thin-layer flows are characterized by two Reynolds numb
The first, commonly used Reynolds number is Re5UL/n,
whereU is the velocity scale andL is the typical size. We
adoptU5E1/2 andL5(E/Z)1/2, to obtain Re5E/Z1/2n, as in
@14#. It should be multiplied with a factor of 21/2 to obtain
the Reynolds number defined in@10#. HereE andZ are the
energy and enstrophy~per unit mass!, respectively. For flows
with initial energy spectrum concentrated in the vicinity
forcing wave numberkf , the scaleL corresponds tokf

21 and
is much less@by a factor of (2p)21# than the wavelength
While this could cause some inconvenience in comparinL
with observed sizes of vortex features, the definition ofL in
terms of energy and enstrophy is free of conventions
would be necessary otherwise. The same definition of s
is used in@19#.

In our experimentskf
215(kf x

2 1kf y
2 )21/25d/(pA2) or

0.31 cm. Herekf x5kf y5d/p are the components of forcin
wave number along side walls of the cell andd is the magnet
diameter. The estimate for the maximum initial Reyno
number is Re'100, which is also close to the values r
ported in soap-film experiments~see@13,14# and take into
account that the external scale in Ref.@13# is 2p times
greater!. The Reynolds number defined on the working a
~or cell! size is much higher and exceeds 2000 in exp
ments forced by the current higher than 1 A~papers@11,19#
report close values of the cell-size Reynolds number!.

The second Reynolds number is based on the bot
drag. It could be defined as Red5U/Ll5Z1/2/l and thought
of as the number of vortex turnovers performed for line
drag spin down time. This quantity is smaller than the co
mon Reynolds number because the bottom drag in thin-la
flows is responsible for the larger part of dissipation. Flo
will be governed by the lowest Reynolds number, thus
03631
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presence of bottom drag makes them less supercritical an
of primary importance.

To compensate the contribution from the linear drag te
in Eq. ~1! the authors of@11# propose to make the transform
to new, ‘‘compressed’’ time defined as

dt5e2l(t2t0)dt,

or t5$12exp@2l(t2t0)#%/l, and to compensated field
(c8,z8)5(c,z)exp@l(t2t0)#. In new variables, the linea
drag term disappears and the vorticity equation becomes

]tz81@c8,z8#5n8Dz8.

The price paid for the transform is the exponentially growi
viscosityn85n exp@l(t2t0)# and finite evolution time. While
the compressed time could be convenient for the analysi
requires the experimentally determined parameterl, and er-
rors in l would be exponentially amplified in the compe
sated fields.

C. Energy decay and the drag coefficient

Figure 2~a! shows the typical pattern of energy decay
our experiments. It refers to the flow forced~at t,t0) with
the current of 2 A in a layer with thicknessh55 mm. The
initial Reynolds number Re'83. Making use of the variable
time step between analyzed frames made it possible to

FIG. 2. Energy decay in experiment with Re(t0)'83 and h
55 mm ~a! and contributions to the energy decay~b!: d(ln E)/dt
12nZ/E ~irregular solid line!, 22l ~straight solid line!, and
22nZ/E ~dotted line!.
6-3
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DANILOV, DOLZHANSKII, DOVZHENKO, AND KRYMOV PHYSICAL REVIEW E 65 036316
serve energy decay for more than 3 orders of magnitude
follows from Fig. 2, the energy approximately follows th
exponential law for most of the decay. However, closer
spection of energy evolution in experiments with relative
thick fluid layer (h55 –6 mm) shows that the exponent va
ies during the decay, from larger to lower values. This pa
reflects the decrease in the contribution from ordinary v
cosity as the typical flow scale grows during decay. In e
periments with smallh, the exponent remains virtually con
stant after some initial phase, as the contribution of ordin
viscosity ~compared to the bottom drag! into the decay dec-
rement is small even on the energy injection scale.

The energy budget equation for the case under consi
ation is

Ė522lE22nZ1F/S,

where F52*]Sn•v(v2/21p/r)dl1n*]Szv•dl is the en-
ergy flux into the flow through the lateral boundaries,S the
area of working domain,dl is the element of the boundar
oriented so that the domain is to the left, andn is the vector
of outer normal. The longer walls of the working domain a
rigid and do not contribute toF. The flux through shorter
walls is not zero, but could be neglected, as positive
negative contributions effectively cancel each other mak
F/S very small compared to the total energy dissipation.

Figure 2~b! illustrates the procedure of computation of t
drag coefficientl. The irregular solid line in Fig. 2~b! dis-
plays the difference between the full decay rate, given by
logarithmic derivative of energy,d ln E/dt, and the contribu-
tion into the decay rate from the ordinary viscos
22nZ/E. The latter quantity is plotted by the dotted line f
comparison. The data refer to the same experiment as in
2~a!. The logarithmic derivative is computed by forward d
ferences and smoothed using moving mean over three
points ~this affects only the initial part of the curve whe
energy tendencyĖ fluctuates noticeably!. The straight solid
line in Fig. 2~b! corresponds to the mean exponent~deter-
mined over last 15 s! of energy decay due to the bottom dra
This exponent is identified with 2l.

The initial part of the irregular curve goes below the so
straight line, indicating that the energy decay rateudE/dtu is
larger than the sum 2lE12nZ, contrary to what one would
expect from a strictly 2D flow. The discrepancy between
irregular and straight lines in Fig. 2~b! should be attributed to
3D adaptation of the flow on early stages of the decay. T
contribution from ordinary viscosity measures one-fourth
the total 2D decay rate (2l12nZ/E) initially, and drops to
less than 1/16 at the end of the experiment. We conclude
the main contribution into the decay rate comes from
bottom drag, and even total neglect for ordinary viscos
would change the value ofl measured in experiment bu
slightly.

We found that the quantityk5lh2/(2n) slightly de-
creases as the layer thickness is increased; for a series
the sameh it decreases with the Reynolds number. Its av
aged valuek51.760.15 for the kinematic viscosityn
50.012 cm2/s. The measured value ofk is different from
the values reported in@22# ~1.5–1.6!, however, it could de-
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pend on the flow geometry. It is also higher than the va
k5p2/8'1.23 for the first Stokes mode used in Ref.@11#.
The latter fact is perhaps not surprising because the fl
Reynolds number is greater than unity except for the fi
phase of the decay experiment. The measured value ol
varies from 0.17 to 0.15 s21 in experiments initially forced
with currents from 0.5 to 3 A in a fluid layer ofh55 mm.

D. Decay exponents

We present the analysis of the decaying turbulence as
rived from experiments performed with fluid layer of thick
nessh55 mm. Figure 3 shows typical evolution of the iso
tropic energy spectra computed immediately at the beginn
of the decay, atl(t2t0)'0.35 and atl(t2t0)'1.15 in the
experiment with the initial Reynolds number Re555 ~initial
current of 1 A!. The spectra were computed after applyi
the Hanning window to the velocity field. The spectral sha
does not change afterl(t2t0)51.15 and only the amplitude
of the spectrum decreases. The initial spectrum has the p
at k'2.8 cm21, which is close to the forcing wave numbe
kf estimated above. As the flow decays, energy penetrate
smallerk and the energy peak shifts to the largest resolva
scales. We were not able to study the behavior of the p
wave number as a function of time, as the available spec
range was too narrow and spectral peaks were only mar
ally seen.

All spectra show saturation at largek, which is the con-
sequence of finite accuracy of the experimental data~cf.
@13,15#!. The straight thin line in Fig. 3 has a slope of24.
While such a slope does not contradict the available exp
mental data ~a slope of 23.3 was reported in Refs
@12,13,15#!, the power-law behavior takes place over ve
limited wave-number interval that is narrower than in typic
soap-film experiments, see Refs.@13,15#.

Figures 4~a! and 4~c! show the decay of compensated e
strophy Z85(z8)2/2 and the growth of the typical sizeL
5(E/Z)1/2 against the compressed timet in three realiza-
tions with various initial Reynolds numbers. Figures 4~b! and
4~d! show the ratio of enstrophy to energy and the behav
of vorticity kurtosis as functions of the decay timet2t0. The

FIG. 3. Evolution of energy spectrum in a flow excited wi
current of 1 A.l(t2t0)50 (s), 0.35 (¹), 1.15 (1).
6-4
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three realizations analyzed in Fig. 4 were obtained by tra
mitting initial currents of 0.5, 1, and 3 A through the electr
lyte. Corresponding Reynolds numbers are given in Fig.

All decay realizations excited by currents of the sa
magnitude show close behavior, although there always
some fluctuations due to different initial conditions.

If we follow the argument of@11# and analyze the deca
of compensated enstrophy vs compressed time@Fig. 4~a!#,
we would conclude that there exists an interval where
compensated enstrophy approximately obeys the power

Z8;t2jZ,

provided that the initial Reynolds number~see Fig. 5! is
sufficiently high. The power-law interval is not very wid
and disappears altogether as the initial Reynolds numbe

FIG. 4. Compensated enstrophyZ8 ~a!, the ratio of enstrophy to
energy~b!, typical sizeL5(E/Z)1/2 ~c!, and kurtosis~d! in decay
realizations with different initial Reynolds number.1, s, and *
correspond to initial forcing by the currents of 0.5, 1.0, and 3.0
respectively; the straight line in~a! has a slope of20.75, and the
straight line in~b! has a slope of20.4.

FIG. 5. Reynolds numbers for the experiments shown in Fig
(1, s, and *). The thin line plots Red corresponding to the case o
highest Re(t0).
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decreased. The slope of the thin line in Fig. 4~a! is 20.75.
For the experiment with the highest Reynolds number
least square fit gives the spectral slopejZ50.7760.035 over
the interval ofl(t2t0) from 0.05 to 0.83, and it become
0.9560.23 for a wider interval from 0.05 to 3.3. It is sha
lower than the slope reported in Refs.@9,10#. According to
@9# jZ51.2, and Ref.@10# givesjZ around 1.2 for the range
of Reynolds numbers in our experiments, withjZ→0.8 in
the limit of Re sufficiently large (Re.1024/21/2). However,
in our experiments, the Reynolds number~Fig. 5! decreases
with time, so one would expect a steeper~if any! exponent.

The observed exponent of the enstrophy decay law a
differs from the value reported in Refs.@11#. Hansenet al.
@11#, however, measure the exponent of the decay of
enstrophy-to-energy ratioZ/E5Z8/E8. Similarly as withZ8,
we found Z/E as a function oft to exhibit a power-law
region only in the realization with the highest Re(t0). The
respective exponent is20.560.07 for l(t2t0) varying
from 0.05 to 3.3, close to the value reported in Ref.@11#. The
decay exponent determined in this way deviates even fur
from the theoretical predictions.

The difference between the values of exponents de
mined by the decays ofZ8 andZ/E comes entirely from the
difference between the bottom drag decay exp@22l(t2t0)#
that is compensated inZ8, and the real decay of energy~with
a contribution from ordinary viscosity and 3D effects!. This
difference is small at the final stage of the decay, but it
significant initially.

The power-law behavior is expressed much better if
plot Z8 or the ratioZ/E against the decay timet2t0. The
decay ofZ/E is shown in Fig. 4~b!. While the slope change
from realization to realization, the power-law behavior is o
served for all three cases presented in Fig. 4~b!. The thin
straight line~drawn for comparison! corresponds to a slop
of 20.4. The measured slopes are20.4460.03 @time inter-
val 0.2<l(t2t0)<3#, 20.4860.04 @0.13<l(t2t0)
<3.5#, and20.3760.02 @0.05<l(t2t0)<3.3# for the re-
alizations initialized with currents of 0.5, 1, and 3 A, respe
tively. The decay of the compensated enstrophy against o
nary time is characterized by power laws with expone
20.8360.03 @time interval 0.27<l(t2t0)<3#, 20.78
60.05 @0.13<l(t2t0)<3.5#, and 20.7160.04 @0.05
<l(t2t0)<3.3# for the same realizations.

We note that the slopes found for enstrophy decay aga
both the compressed and ordinary times are close. The s
conclusion can be drawn from the comparison of the res
of @11,19#. The slopes, however, are sensitive to the way
which the influence of the bottom drag is compensated.

Since the typical vortex size as defined here is linked
the enstrophy-to-energy ratio@L5(Z/E)21/2#, the presence
of power-law interval in the dependence ofZ/E on t2t0
implies the presence of the power-law interval in the dep
dence ofL on t2t0, and exponents can be computed fro
those ofZ/E.

However, if typical vortex size is plotted against the com
pressed timet, it shows almost linear behavior in all thre
cases, see Fig. 4~c!. In log coordinates,L as a function oft
would show a power-law interval only for the highest Re

4
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nolds number. Since typical vortex size increases only tw
fold for the time of evolution, neither of the interpretations
reliable.

The magnitude of vorticity kurtosis@Fig. 4~d!# is below
the Gaussian value of 3. It drops at the beginning of
decay to approximately 1.8, but starts to increase afterwa
This suggests that vorticity distribution is rather smooth, a
well-pronounced vorticity extrema, or vortices, are n
present initially, and do not form as turbulence evolves.
deed, one would normally associate the appearance of w
formed vortices with high magnitude of kurtosis, up to se
eral tens~see, e.g.,@1,7#!. This aspect of turbulence evolutio
in thin layer makes it very different from the evolution o
served in numeric simulation.

In all our experiments the Reynolds number~see Fig. 5!
decreases down to values of several units~we were unable to
follow very small flow velocities down to the complete d
cay!. Plotted as a function of the compressed time, it
creases approximately linearly. The observed decrease in
Reynolds number indicates once again that the decay in
layers is different from that observed in typical numeric
simulations. Indeed, as follows from@10#, the decay in a
fluid with normal viscosity proceeds with increase of t
Reynolds number if initially Re exceeds a value
15.73/21/2. In all cases presented in Fig. 5 the initial Re
nolds number is higher than critical, but no increase is
served.

As we have already mentioned, the real role of dissipat
is underpredicted by ordinary Reynolds number, and dec
ing flows enter the stage of linear dissipation earlier than
becomes comparable to unity. The Reynolds number ba
on the bottom drag is more appropriate quantity for flows
thin layers. In Fig. 5 we present the evolution of the Red for
the highest initial Reynolds number~thin line!. This quantity
is smaller than the ordinary Reynolds number and beco
less than unity 11 s after the beginning of the decay. T
subsequent evolution of the flow is linear decay, when n
linear energy transfer does not play any significant role.

E. Vorticity patterns

The small~smaller than Gaussian! magnitude of kurtosis
indicate the absence of strong vortices in vorticity field. F
ure 6 presents vorticity realizations at the forced stage~a!, 2
s @l(t2t0)'0.3# after forcing was switched off~b!, and at
the final stage of the decay 20 s@l(t2t0)'3# later~c! in the
experiment with Re(t0)'83. Contours in vorticity patterns
are drawn at levels of rms and twice rms vorticityz rms . The
areas where vorticity exceeds 3z rms are practically absent
The areas occupied by vorticity in excess of 2z rms do not
possess regular~circular or elliptic! form, and are surrounde
by much wider areas where vorticity level is between o
and two rms. These latter seem to be more important
namically, since they induce larger velocity field tha
‘‘vortices’’—areas with uzu.2z rms . The size of vorticity
patches increases during evolution, together with the
tance between their centers. For example, the number of
tours uzu5z rms seen in Fig. 6~a! is approximately five times
greater than that in the final pattern in Fig. 6~c!.
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However, there is much arbitrariness around any vor
census algorithm in such smooth vorticity fields, and
choose not to speculate on quantities such as the numb
vortices or the distance between vortices.

Comparison of Figs. 6~a! and 6~b! shows that initial decay
of turbulent flow proceeds as one would have expected.
vortices stretch each other and the population of initial v
ticity patches evolves into filaments. Still, in one respect,
vorticity pattern looks very different from that seen in n
merical simulations. We do not observe thin and intense fi
ments and typical filament thickness is limited to several g
intervals. Instead of intense stretching, formation of ve
elongated structures, and appearance of strong vortice

FIG. 6. Vorticity patterns in forced regime~a!, 2 s after the
beginning of the decay~b!, and in the final phase 20 s later~c!. The
black and white contours correspond to rms and double-rms lev
and the gray scale palette is used. The coordinates are in grid i
vals.
6-6
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such a background, we observe rather ‘‘smooth’’ decay,
the area where vorticity level exceedsz rms occupies a con-
siderable part of the total area during the decay. The fi
vorticity distribution, Fig. 6~c!, consists of wide vorticity
patches, and contoursuzu5z rms look very irregular. This in-
dicates that we are dealing with remnant vorticity that slow
dies away. The distribution of vorticity in Fig. 6~c! contains
fluctuations on the grid scale—they are seen because o
very low vorticity amplitude.

III. DISCUSSION AND CONCLUSIONS

According to the results presented above, the enstro
decay in thin-layer flows could be approximated by pow
laws (t2t0)2j over some interval of decay timet2t0. How-
ever, the value of the decay exponent proves sensitive to
way in which it is determined. The problem comes from t
influence of bottom drag that introduces additional dissi
tion of both energy and enstrophy ase22l(t2t0). If this dis-
sipation is compensated directly by introducing the comp
sated enstrophyZ8, we find j scattered around 0.7
depending on the initial Reynolds number. If the bottom-d
dissipation is ‘‘compensated’’ by considering the enstrop
to-energy ratio, the exponent is around a value of 0.45
agreement with the results previously reported in Re
@11,19#. Using the compressed time instead of ordinary ti
makes the performance of power-law approximation wor
as the decay curve becomes steeper aslt→1.

However, bothZ8 andZ/E ~independent of the time scal
used! do not seem to be proper quantities for the compari
with numerical simulations. Indeed, in numerical simulatio
of decaying 2D turbulence~see, e.g.,@7#! the energy remains
virtually constant during the decay. On the contrary, in lab
ratory experiments that use thin-layer setups, the energy
sentially decays, mostly due to the bottom drag, but also
to the ordinary viscosity, since the initial Reynolds numbe
not very high. The 3D adaptation at the initial stage redu
the Reynolds number even further. Our conclusion is t
one cannot compare these cases, and the fact that the slo
enstrophy decay is sensitive to the type of compensation
ports it.

We do not see any developed vortices in the evolv
vorticity field, and the vorticity kurtosis remains less than t
Gaussian value of 3~the same is true for@11#, see their Fig.
8!. This should be compared to a value of several tens typ
to the numerical decay simulations@1,7#. The dynamics of
the vorticity field in decaying turbulent thin-layer flows d
not reduce to the dynamics of point vortices, so we can
expect that it would follow the scenario of@3# ~at least at
ss

03631
d

al

he

hy
r

he

-

-

g
-
in
.

e
e,

n
s

-
s-
e

s
s
t

e of
p-

g

al

ot

current values of the Reynolds number!. Even if we leave
aside the obvious influence of bottom drag, the decay sho
be sensitive to the type of small-scale dissipation and
Reynolds number, as we have already mentioned in the
troduction.

In accordance with the modified vorticity equation~2!, the
decay of thin-layer flows vs the compressed time is acco
panied by increase of ordinary viscosity. This results in d
creasing Reynolds number at large time, so the self-sim
decay is hardly possible. However, one would expect tha
this case the compensated enstrophy would decay faster
power20.8 ~the shallowest value of the decay exponent
@10#! of the compressed timet. So the question is why the
compensated enstrophy decays anomalously slowly in
experimental system studied here. The answer could be
absence of thin vorticity filaments in the vorticity field an
thus the suppression of the enstrophy cascade to sm
scales. This corresponds to relatively small effect of adv
tion compared to that of dissipation, or in other words, to
initial Reynolds numbers being insufficiently high due to t
presence of bottom drag. The fact that flows in thin layers
two dimensional only, approximately, and two dimension
ity is broken on scales comparable to or less than the fl
depth, could also play some role. The true enstrophy di
pation is influenced by 3D processes and need not obey
equations.

The peculiar feature of flows excited electromagnetica
in thin layers is that the horizontal scale of forcing is typ
cally close to or larger than the fluid layer thickness, as th
layers cannot be excited effectively due to an exponen
decay of the magnetic field with distance from the botto
This results in strong bottom drag compared to ordinary d
sipation, and relatively high initial Reynolds numbers a
needed to provide a time interval with the Reynolds num
growing during the decay. In this respect soap-film setups
less restrictive, and the growth of the Reynolds number
decaying soap-film turbulence was already reported in R
@13#. In Ref. @13#, the initial Reynolds numbers are of th
same order as in our experiments~their integral scale is 2p
times higher!, the energy and rms velocity are decaying d
to external drag, but the integral scale is growing such t
the Reynolds number does not decrease.
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